Requirement of Simultaneous Assessment of Crystal- and Supernatant-Related Entomotoxic Activities of Bacillus thuringiensis Strains for Biocontrol-Product Development
نویسندگان
چکیده
Bioinsecticides with lower concentrations of endospores/crystals and without loss of efficiency are economically advantageous for pest biocontrol. In addition to Cry proteins, other Bacillus thuringiensis (Bt) toxins in culture supernatants (SN) have biocontrol potential (e.g., Vip3A, Cry1I, Sip1), whereas others are unwanted (β-exotoxins), as they display widespread toxicity across taxa. A strain simultaneously providing distinct toxin activities in crystals and SN would be desirable for bioinsecticides development; however, strains secreting β-exotoxins should be discarded, independently of other useful entomotoxins. Entomotoxicity of crystals and SN from a Brazilian Bt tolworthi strain (Btt01) was tested against Spodoptera frugiperda to assess the potential for biocontrol-product development based on more than one type of toxin/activity. Tests showed that 10(7) endospores mL(-1) caused >80% of larvae mortality, suggesting Btt01 may be used in similar concentrations as those of other Bt-based biopesticides. When it was applied to cornfields, a significant 60% reduction of larvae infestation was observed. However, bioassays with Btt01 SN revealed a thermostable toxic activity. Physicochemical characterization strongly suggests the presence of unwanted β-exotoxins, with isolate-specific temporal variation in its secretion. Knowledge of the temporal pattern of secretion/activity in culture for all forms of toxins produced by a single strain is required to both detect useful activities and avoid the potential lack of identification of undesirable toxins. These findings are discussed in the contexts of commercial Bt product development, advantages of multiple-activity strains, and care and handling recommended for large-scale fermentation systems.
منابع مشابه
Application of Membrane Separation Technology in Downstream Processing of Bacillus thuringiensis Biopesticide: A Review
Bacillus thuringiensis (Bt) has been extensively used in biopesticidal formulations due to its safe environmental and human health records. The widespread use of Bt is often challenged by production as well as formulation costs which are in direct contact with downstream processing, i.e. the separation/purification step. Downstream separation/purification efficacy governs the marketabi...
متن کاملInvestigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line
Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and the...
متن کاملBacillus thuringiensis and Bacillus weihenstephanensis Inhibit the Growth of Phytopathogenic Verticillium Species
Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-ass...
متن کاملEffects of Protoplast Fusion on δ-endotoxin Production in Bacillus thuringiensis Spp. (H14)
In this study, mutant forms of Bacillus thuringiensis spp. israelensis (H14) were produced. These mutants were identified when the cells were cultured on chloramphenicol plates and stained with crystal violet. Protoplasts of the mutants were isolated by enzymatic digestion (lysozyme) of the cell walls at the presence of an osmotic stabilizer. The protoplasts were induced to fuse to each other i...
متن کاملSusceptibility Status of Anopheles Stephensi Liston the Main Malaria Vector, to Deltamethrin and Bacillus Thuringiensis in the Endemic Malarious Area of Hormozgan Province, Southern Iran
Background & Aims: Anopheles stephensi is one of the most important malaria vectors in Hormozgan province, southern Iran. This species with high density has an effective role in malaria transmission, especially in plain and coastal areas. At present, the country malaria vector control program in areas with local transmission is using deltamethrin 5% and Bacillus thuringiensis as insecticide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014